login
A283595
Triangle read by rows: T(n,k) is the number of Motzkin prefixes (i.e., left factors of Motzkin paths) of length n and height k.
3
1, 1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 13, 5, 1, 1, 31, 38, 19, 6, 1, 1, 63, 105, 64, 26, 7, 1, 1, 127, 280, 202, 97, 34, 8, 1, 1, 255, 729, 612, 334, 139, 43, 9, 1, 1, 511, 1866, 1803, 1094, 516, 191, 53, 10, 1, 1, 1023, 4717, 5205, 3465, 1802, 760, 254, 64, 11, 1
OFFSET
0,5
COMMENTS
Row n has n+1 entries.
LINKS
Steven R. Finch, How far might we walk at random?, arXiv:1802.04615 [math.HO], 2018.
EXAMPLE
Triangle starts:
1;
1, 1;
1, 3, 1;
1, 7, 4, 1;
1, 15, 13, 5, 1;
1, 31, 38, 19, 6, 1;
...
T(3,2) = 4 because we have UHU, HUU, UUD and UUH, where U=(1,1), D=(1,-1), H=(1,0).
T(3,1) = 7 because we have UDH, HUD, UHD, UHH, HUH, HHU and UDU.
MAPLE
b:= proc(x, y, m) option remember; `if`(x=0, z^m, b(x-1, y, m)+
`if`(y>0, b(x-1, y-1, m), 0)+b(x-1, y+1, max(m, y+1)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..n))(b(n, 0$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Mar 13 2017
MATHEMATICA
b[x_, y_, m_] := b[x, y, m] = If[x==0, z^m, b[x-1, y, m] + If[y>0, b[x-1, y - 1, m], 0] + b[x-1, y+1, Max[m, y+1]]]; T[n_] := Function[p, Table[ Coefficient[p, z, i], {i, 0, n}]][b[n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2017, after Alois P. Heinz *)
CROSSREFS
Row sums give A005773(n+1).
T(2n,n) gives A283667.
Sequence in context: A140068 A179745 A121300 * A128119 A158198 A158793
KEYWORD
nonn,tabl
AUTHOR
Steven Finch, Mar 13 2017
EXTENSIONS
More terms from Alois P. Heinz, Mar 13 2017
STATUS
approved