login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128119
Square array T(n,m) read by antidiagonals: number of sublattices of index m in generic n-dimensional lattice.
3
1, 1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 13, 7, 1, 1, 31, 40, 35, 6, 1, 1, 63, 121, 155, 31, 12, 1, 1, 127, 364, 651, 156, 91, 8, 1, 1, 255, 1093, 2667, 781, 600, 57, 15, 1, 1, 511, 3280, 10795, 3906, 3751, 400, 155, 13, 1, 1, 1023, 9841, 43435, 19531, 22932, 2801, 1395, 130, 18, 1
OFFSET
1,5
COMMENTS
Differs from sum of divisors of m^(n-1) in 4th column!
REFERENCES
Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]
LINKS
Michael Baake, Solution of the coincidence problem in dimensions d≤4, arXiv:math/0605222 [math.MG], 2006. [Appx. A]
B. Gruber, Alternative formulas for the number of sublattices, Acta Cryst. A53 (1997) 807-808.
Yi Ming Zou, Gaussian binomials and the number of sublattices, arXiv:math/0610684 [math.CO], 2006.
FORMULA
Dirichlet g.f. of n-th row: Product_{i=0..n-1} zeta(s-i).
If m is squarefree, T(n,m) = A000203(m^(n-1)). - Álvar Ibeas, Jan 17 2015
T(n, Product(p^e)) = Product(Gaussian_poly[e+n-1, e]_p). - Álvar Ibeas, Oct 31 2015
EXAMPLE
Array starts:
1,1,1,1,1,1,1,1,1,
1,3,4,7,6,12,8,15,13,
1,7,13,35,31,91,57,155,130,
1,15,40,155,156,600,400,1395,1210,
1,31,121,651,781,3751,2801,11811,11011,
1,63,364,2667,3906,22932,19608,97155,99463,
1,127,1093,10795,19531,138811,137257,788035,896260,
1,255,3280,43435,97656,836400,960800,6347715,8069620,
MATHEMATICA
T[n_, m_] := If[m == 1, 1, Product[{p, e} = pe; (p^(e+j)-1)/(p^j-1), {pe, FactorInteger[m]}, {j, 1, n-1}]];
Table[T[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 10 2018 *)
PROG
(PARI) T(n, m)=local(k, v); v=factor(m); k=matsize(v)[1]; prod(i=1, k, prod(j=1, n-1, (v[i, 1]^(v[i, 2]+j)-1)/(v[i, 1]^j-1)))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 09 2007
EXTENSIONS
Edited by Charles R Greathouse IV, Oct 28 2009
STATUS
approved