login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038992 Sublattices of index n in generic 5-dimensional lattice. 12
1, 31, 121, 651, 781, 3751, 2801, 11811, 11011, 24211, 16105, 78771, 30941, 86831, 94501, 200787, 88741, 341341, 137561, 508431, 338921, 499255, 292561, 1429131, 508431, 959171, 925771, 1823451, 732541, 2929531, 954305, 3309747, 1948705, 2750971, 2187581, 7168161, 1926221 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

M. Baake, "Solution of coincidence problem...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from G. C. Greubel)

M. Baake, N. Neumarker, A Note on the Relation Between Fixed Point and Orbit Count Sequences, JIS 12 (2009) 09.4.4, Section 3.

Index entries for sequences related to sublattices

FORMULA

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=5.

Multiplicative with a(p^e) = Product_{k=1..4} (p^(e+k)-1)/(p^k-1).

Dirichlet g.f. zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3)*zeta(s-4). Dirichlet convolution of A038991 with A000583. - R. J. Mathar, Mar 31 2011

MATHEMATICA

a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #*DivisorSum[#, # &] &] &] &]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *)

f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 4}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)

PROG

(PARI) a(n)=sumdiv(n, x, x * sumdiv(x, y, y * sumdiv(y, z, z * sumdiv(z, w, w ) ) ) ); /* Joerg Arndt, Oct 07 2012 */

CROSSREFS

Cf. A001001, A038991, A038993, A038994, A038995, A038996, A038997, A038998, A038999.

Sequence in context: A158558 A160893 A202994 * A068021 A131992 A042884

Adjacent sequences:  A038989 A038990 A038991 * A038993 A038994 A038995

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane

EXTENSIONS

Offset changed from 0 to 1 by R. J. Mathar, Mar 31 2011

More terms from Joerg Arndt, Oct 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 16:32 EST 2022. Contains 350472 sequences. (Running on oeis4.)