login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038993 Sublattices of index n in generic 6-dimensional lattice. 12
1, 63, 364, 2667, 3906, 22932, 19608, 97155, 99463, 246078, 177156, 970788, 402234, 1235304, 1421784, 3309747, 1508598, 6266169, 2613660, 10417302, 7137312, 11160828, 6728904, 35364420, 12714681, 25340742, 25095280, 52294536, 21243690, 89572392, 29583456 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

M. Baake and N. Neumarker, A Note on the Relation Between Fixed Point and Orbit Count Sequences, JIS 12 (2009) 09.4.4, Section 3.

Index entries for sequences related to sublattices.

FORMULA

f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=6.

Multiplicative with a(p^e) = product (p^(e+k)-1)/(p^k-1), k=1..5.

Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3)*zeta(s-4)*zeta(s-5). Dirichlet convolution of A038992 with A000584. - R. J. Mathar, Mar 31 2011

Sum_{k=1..n} a(k) ~ c * n^6, where c = Pi^12*zeta(3)*zeta(5)/3061800 = 0.376266... . - Amiram Eldar, Oct 19 2022

MATHEMATICA

f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 5}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)

CROSSREFS

Cf. A001001, A038991, A038992, A038994, A038995, A038996, A038997, A038998, A038999.

Sequence in context: A034817 A160895 A203556 * A068022 A131993 A251019

Adjacent sequences: A038990 A038991 A038992 * A038994 A038995 A038996

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane

EXTENSIONS

Offset changed from 0 to 1 by R. J. Mathar, Mar 31 2011

More terms from Amiram Eldar, Aug 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 21:40 EDT 2023. Contains 361673 sequences. (Running on oeis4.)