login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160895 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7. 4
1, 63, 364, 2016, 3906, 22932, 19608, 64512, 88452, 246078, 177156, 733824, 402234, 1235304, 1421784, 2064384, 1508598, 5572476, 2613660, 7874496, 7137312, 11160828, 6728904, 23482368, 12206250, 25340742, 21493836, 39529728, 21243690, 89572392 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the number of lattices L in Z^6 such that the quotient group Z^6 / L is C_nm x (C_m)^5 (and also (C_nm)^5 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

REFERENCES

J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

LINKS

Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000

Index to Jordan function ratios J_k/J_1

FORMULA

a(n) = J_6(n)/J_1(n)=J_6(n)/phi(n)=A069091(n)/A000010(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Oct 20 2010

Multiplicative with a(p^e) = p^(5e-5)*(1+p+p^2+p^3+p^4+p^5). - R. J. Mathar, Jul 10 2011

For squarefree n, a(n) = A000203(n^5). - Álvar Ibeas, Oct 30 2015

MAPLE

A160895 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1, f) ; e := op(2, f) ; a := a*p^(5*e-5)*(1+p+p^2+p^3+p^4+p^5) ; end do; a; end proc: # R. J. Mathar, Jul 10 2011

MATHEMATICA

A160895[n_]:=DivisorSum[n, MoebiusMu[n/# ]*#^(7-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 20 2010 *)

PROG

(PARI) vector(50, n, sumdiv(n^5, d, if(ispower(d, 6), moebius(sqrtnint(d, 6))*sigma(n^5/d), 0))) \\ Altug Alkan, Oct 30 2014

(PARI) a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p^(5*f[i, 2]-5)*(1+p+p^2+p^3+p^4+p^5); f[i, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 12 2015

CROSSREFS

Sequence in context: A204736 A160674 A034817 * A203556 A038993 A068022

Adjacent sequences:  A160892 A160893 A160894 * A160896 A160897 A160898

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Nov 19 2009

EXTENSIONS

Definition corrected by Enrique Pérez Herrero, Oct 20 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 12:43 EDT 2016. Contains 276546 sequences.