login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160894
a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 5.
1
31, 465, 1240, 3720, 4836, 18600, 12400, 29760, 33480, 72540, 45384, 148800, 73780, 186000, 193440, 238080, 161820, 502200, 224440, 580320, 496000, 680760, 394320, 1190400, 604500, 1106700, 903960, 1488000, 783060, 2901600, 954304, 1904640, 1815360, 2427300
OFFSET
1,1
LINKS
Jin Ho Kwak and Jaeun Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
FORMULA
a(n) = 31*A160891(n). - R. J. Mathar, Mar 16 2016
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^4, where c = (31/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 14.3522727306... .
Sum_{k>=1} 1/a(k) = (zeta(3)*zeta(4)/31) * Product_{p prime} (1 - 2/p^4 + 1/p^7) = 0.03599754726... . (End)
MATHEMATICA
f[p_, e_] := p^(3 e - 3)*(1 + p + p^2 + p^3); a[1] = 31; a[n_] := 31 * Times @@ f @@@ FactorInteger[n]; Array[a, 32] (* Amiram Eldar, Nov 08 2022 *)
PROG
(PARI) a(n) = {my(f = factor(n)); 31 * prod(i = 1, #f~, (f[i, 1]^3 + f[i, 1]^2 + f[i, 1] + 1)*f[i, 1]^(3*f[i, 2] - 3)); } \\ Amiram Eldar, Nov 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 19 2009
STATUS
approved