login
A038991
Number of sublattices of index n in generic 4-dimensional lattice.
12
1, 15, 40, 155, 156, 600, 400, 1395, 1210, 2340, 1464, 6200, 2380, 6000, 6240, 11811, 5220, 18150, 7240, 24180, 16000, 21960, 12720, 55800, 20306, 35700, 33880, 62000, 25260, 93600, 30784, 97155, 58560, 78300, 62400, 187550, 52060, 108600, 95200, 217620, 70644, 240000, 81400
OFFSET
1,2
REFERENCES
M. Baake, "Solution of coincidence problem...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from G. C. Greubel)
M. Baake and U. Grimm, Combinatorial problems of (quasi)crystallography, arXiv:math-ph/0212015, 2002.
M. Baake, N. Neumarker, A Note on the Relation Between Fixed Point and Orbit Count Sequences, JIS 12 (2009) 09.4.4, Section 3.
Tad White, Counting Free Abelian Actions, arXiv preprint arXiv:1304.2830 [math.CO], 2013.
FORMULA
f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=4.
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)*zeta(s-3).
Dirichlet convolution of A000578 and A001001.
Multiplicative with a(p^e) = Product_{k=1..3} (p^(e+k)-1)/(p^k-1).
Sum_{k=1..n} a(k) ~ Pi^6 * Zeta(3) * n^4 / 2160. - Vaclav Kotesovec, Feb 01 2019
MATHEMATICA
a[n_] := DivisorSum[n, #*DivisorSum[#, #*DivisorSum[#, #&]&]&]; Array[a, 50] (* Jean-François Alcover, Dec 02 2015, after Joerg Arndt *)
f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 3}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
PROG
(PARI) a(n)=sumdiv(n, x, x * sumdiv(x, y, y * sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */
CROSSREFS
KEYWORD
nonn,mult
EXTENSIONS
Offset changed from 0 to 1 by R. J. Mathar, Mar 31 2011
More terms from Joerg Arndt, Oct 07 2012
STATUS
approved