OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = (1/3!)*(sigma_1(n)^3 + 3*sigma_1(n)*sigma_2(n) + 2*sigma_3(n)).
a(n) = Sum_{r|n, s|n, t|n, r<=s<=t} r*s*t.
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: (zeta(s)*zeta(s-3)/6) * (zeta(s-1)*zeta(s-2) * (f(s) + 3/zeta(2*s-3)) + 2), where f(s) = Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (7/96) * zeta(3) * zeta(6) * Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) + zeta(2)*zeta(3)*zeta(4)/(8*zeta(5)) + zeta(4)/12 = 0.60106209766277728837... . (End)
MATHEMATICA
a[n_] := 1/3!*(DivisorSigma[1, n]^3 + 3*DivisorSigma[1, n]*DivisorSigma[2, n] + 2*DivisorSigma[3, n]); Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Dec 12 2011, after given formula *)
CIP3 = CycleIndexPolynomial[SymmetricGroup[3], Array[x, 3]]; a[n_] := CIP3 /. x[k_] -> DivisorSigma[k, n]; Array[a, 39] (* Jean-François Alcover, Nov 04 2016 *)
PROG
(PARI) a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 1)*sigma(f, 2) + sigma(f)^3) / 6; \\ Amiram Eldar, Jan 03 2025
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Feb 08 2002
STATUS
approved