login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068018
Number of fixed points in all 132- and 213-avoiding permutations of {1,2,...,n} (these are permutations with runs consisting of consecutive integers).
1
0, 1, 2, 4, 6, 12, 18, 40, 62, 148, 234, 576, 918, 2284, 3650, 9112, 14574, 36420, 58266, 145648, 233030, 582556, 932082, 2330184, 3728286, 9320692, 14913098, 37282720, 59652342, 149130828, 238609314, 596523256, 954437198, 2386092964, 3817748730, 9544371792
OFFSET
0,3
FORMULA
a(n) = 2^n/4 - (-2)^n/36 + 2*n/3 - 2/9.
G.f.: z*(1 - 3*z^2)/((1 - 4*z^2)*(1 - z)^2).
E.g.f.: (cosh(x)*(5*sinh(x) + 6*x - 2) + 2*(cosh(2*x) + (3*x - 1)*sinh(x)))/9. - Stefano Spezia, Jun 12 2023
EXAMPLE
a(3) = 4 because the permutations 123, 231, 312, 321 of {1,2,3} contain 4 fixed points altogether (all three entries of the first permutation and entry 2 in the last one).
MAPLE
seq(2^n/4-(-2)^n/36+2*n/3-2/9, n=0..40);
CROSSREFS
Cf. A061547.
Sequence in context: A068911 A243543 A094769 * A358650 A357546 A294918
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Mar 22 2002
STATUS
approved