login
A094769
Square spiral of sums of selected preceding terms, starting at 0 followed by 1 (a spiral Fibonacci-like sequence).
5
0, 1, 1, 2, 4, 6, 12, 18, 37, 56, 94, 189, 285, 475, 952, 1434, 2392, 3830, 7666, 11518, 19202, 30732, 61482, 92281, 153874, 246248, 400178, 800450, 1200967, 2001985, 3203426, 5205696, 10411867, 15619275, 26034003, 41658056, 67695885, 109356333
OFFSET
1,4
COMMENTS
Enter 0 into center position and 1 into next position of the spiral. Repeat: Add to the number in the present position the numbers in all those already filled positions that are horizontally, vertically or diagonally adjacent to it, go to next position of the spiral and enter the sum into it.
a(1) = 0, a(2) = 1, a(n) = a(n-1) + Sum_{i < n-1 and a(i) is adjacent to a(n-1)} a(i).
As in A094767 eight positions are considered adjacent here.
Clockwise and counterclockwise construction of the spiral result in the same sequence.
LINKS
EXAMPLE
Clockwise constructed spiral begins
.
19202--30732--61482--92281-153874
|
|
11518 12-----18-----37-----56
| | |
| | |
7666 6 0------1 94
| | | |
| | | |
3830 4------2------1 189
| |
| |
2392---1434----952----475----285
.
where
a(1) = 0,
a(2) = 1,
a(3) = a(2) + a(1) = 1,
a(4) = a(3) + a(2) + a(1) = 2,
a(5) = a(4) + a(3) + a(2) + a(1) = 4,
a(6) = a(5) + a(4) + a(1) = 6,
a(7) = a(6) + a(5) + a(4) + a(1) = 12.
PROG
(PARI) {m=5; h=2*m-1; A=matrix(h, h); print1(A[m, m]=0, ", "); print1(A[m, m+1]=1, ", "); pj=m; pk=m+1; T=[[1, 0], [1, -1], [0, -1], [ -1, -1], [ -1, 0], [ -1, 1], [0, 1], [1, 1]]; for(n=2, (h-2)^2-1, g=sqrtint(n); r=(g+g%2)\2; q=4*r^2; d=n-q; if(n<=q-2*r, j=d+3*r; k=r, if(n<=q, j=r; k=-d-r, if(n<=q+2*r, j=r-d; k=-r, j=-r; k=d-3*r))); j=j+m; k=k+m; s=A[pj, pk]; for(c=1, 8, v=[pj, pk]; v+=T[c]; s=s+A[v[1], v[2]]); A[j, k]=s; print1(s, ", "); pj=j; pk=k)} \\ Klaus Brockhaus, Aug 27 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Jun 10 2004
EXTENSIONS
Edited and extended beyond a(12) by Klaus Brockhaus, Aug 27 2008
STATUS
approved