OFFSET
1,2
COMMENTS
The Mobius transform of the sequence is 1, 14, 39 ,112, 155,..., which equals the sequence defined by n*A160889(n). - R. J. Mathar, Apr 15 2011
Zhi-Wei Sun noted that the first 10^7 terms are pairwise distinct, but Noam D. Elkies found that a(48142241) = a(48374911), a(384422506) = a(403764207) and so on. - Zhi-Wei Sun, Jan 08 2014
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A000203(n^3). - R. J. Mathar, Mar 31 2011
Multiplicative with a(p^e) = (p^(3e+1)-1)/(p-1). - R. J. Mathar, Mar 31 2011
Sum_{k>=1} 1/a(k) = 1.11535899887110289127674868460900333554265894187008102863022551119560512446... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = 0.4732277044... . - Amiram Eldar, Nov 05 2022
MATHEMATICA
DivisorSigma[1, #]&/@((Range[40])^3) (* Harvey P. Dale, Aug 30 2015 *)
f[p_, e_] := (p^(3*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
PROG
(Magma) [ SumOfDivisors(n^3) : n in [1..100]]; // Vincenzo Librandi, Apr 14 2011
(PARI) a(n) = sigma(n^3); \\ Amiram Eldar, Nov 05 2022
(Python)
from math import prod
from sympy import factorint
def A175926(n): return prod((p**(3*e+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Zak Seidov, Oct 19 2010
STATUS
approved