OFFSET
1,2
COMMENTS
Here sigma(n^4) denotes the sums of divisors of n^4.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
a(11*n) == 0 (mod 5) iff gcd(n,11) = 1.
Logarithmic derivative of A202993.
Multiplicative with a(p^e) = (p^(4*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
Sum_{k>=1} 1/a(k) = 1.04483665108279017775482622699860068916340892303889072390102812885655694752... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.3840585791... . - Amiram Eldar, Nov 05 2022
EXAMPLE
L.g.f.: L(x) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 +...
where exp(L(x)) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...+ A202993(n)*x^n +...
MATHEMATICA
DivisorSigma[1, Range[40]^4] (* Harvey P. Dale, Jan 29 2012 *)
f[p_, e_] := (p^(4*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
PROG
(PARI) {a(n)=sigma(n^4)}
(Python)
from math import prod
from sympy import factorint
def A202994(n): return prod((p**((e<<2)+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Paul D. Hanna, Dec 27 2011
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 23 2018
STATUS
approved