login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202994
a(n) = sigma(n^4).
6
1, 31, 121, 511, 781, 3751, 2801, 8191, 9841, 24211, 16105, 61831, 30941, 86831, 94501, 131071, 88741, 305071, 137561, 399091, 338921, 499255, 292561, 991111, 488281, 959171, 797161, 1431311, 732541, 2929531, 954305, 2097151, 1948705, 2750971, 2187581
OFFSET
1,2
COMMENTS
Here sigma(n^4) denotes the sums of divisors of n^4.
FORMULA
a(11*n) == 0 (mod 5) iff gcd(n,11) = 1.
Logarithmic derivative of A202993.
Multiplicative with a(p^e) = (p^(4*e+1)-1)/(p-1) for prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A000203(A000583(n)). - Michel Marcus, Sep 10 2020
Sum_{k>=1} 1/a(k) = 1.04483665108279017775482622699860068916340892303889072390102812885655694752... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.3840585791... . - Amiram Eldar, Nov 05 2022
EXAMPLE
L.g.f.: L(x) = x + 31*x^2/2 + 121*x^3/3 + 511*x^4/4 + 781*x^5/5 + 3751*x^6/6 +...
where exp(L(x)) = 1 + x + 16*x^2 + 56*x^3 + 296*x^4 + 1052*x^5 + 4952*x^6 +...+ A202993(n)*x^n +...
MATHEMATICA
DivisorSigma[1, Range[40]^4] (* Harvey P. Dale, Jan 29 2012 *)
f[p_, e_] := (p^(4*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
PROG
(PARI) {a(n)=sigma(n^4)}
(Python)
from math import prod
from sympy import factorint
def A202994(n): return prod((p**((e<<2)+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Paul D. Hanna, Dec 27 2011
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 23 2018
STATUS
approved