OFFSET
1,1
COMMENTS
Number of points and lines for the prime(n)-Cremona-Richmond configuration. - Carlos Segovia Gonzalez, Jul 30 2020
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
C. Segovia and M. Winklmeier, Calculating the dimension of the universal embedding of the symplectic dual polar space using languages, arXiv:1312.4315 [math.CO], 2013-2019.
C. Segovia and M. Winklmeier, Calculating the dimension of the universal embedding of the symplectic dual polar space using languages, The Elec. Jour. of Comb. 27(4) (2020), P4.39.
FORMULA
EXAMPLE
a(4)=400 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+7+1=400.
MAPLE
A131991:= n -> map (p -> p^(3)+p^(2)+p+1, ithprime(n)):
seq (A131991(n), n=1..32); # Jani Melik, Jan 25 2011
MATHEMATICA
#^3 + #^2 + # + 1 &/@Prime[Range[100]] (* Vincenzo Librandi, Mar 20 2014 *)
PROG
(Magma) [1+NthPrime(n)+NthPrime(n)^2+NthPrime(n)^3: n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 06 2007
STATUS
approved