login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160889 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4. 6
1, 7, 13, 28, 31, 91, 57, 112, 117, 217, 133, 364, 183, 399, 403, 448, 307, 819, 381, 868, 741, 931, 553, 1456, 775, 1281, 1053, 1596, 871, 2821, 993, 1792, 1729, 2149, 1767, 3276, 1407, 2667, 2379, 3472, 1723, 5187, 1893, 3724, 3627, 3871, 2257, 5824, 2793 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Dirichlet convolution of A000290 and the series of absolute values of A063441. - R. J. Mathar, Jun 20 2011

a(n) is the number of lattices L in Z^3 such that the quotient group Z^3 / L is C_nm x C_m x C_m  (and also C_nm x C_nm x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

REFERENCES

J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

LINKS

Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000

Index to Jordan function ratios J_k/J_1

FORMULA

Moebius transform of A064969. Multiplicative with a(p^e) = (p^2+p+1)*p^(2*e-2). - Vladeta Jovovic, Nov 21 2009

a(n) = J_3(n)/J_1(n)=J_3(n)/phi(n)=A059376(n)/A000010(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Aug 22 2010

Dirichlet g.f.: zeta(s-2)*product_{primes p} (1+p^(1-s)+p^(-s)). - R. J. Mathar, Jun 20 2011

From Álvar Ibeas, Oct 30 2015: (Start)

a(n) = A254981(n^2). For squarefree n, a(n) = A000203(n^2).

a(n) = Sum_{d|n, n/d squarefree} d^2 * A000203(n/d).

(End)

EXAMPLE

There are 35 = A160870(4,3) lattices of volume 4 in Z^3. Among them, 28 give the quotient group C_4 and 7 give the quotient group C_2 x C_2. Hence, a(4) = 28 and a(2) = 7.

There are 2667 = A160870(32,3) lattices of volume 32 in Z^3. Among them, a(32) = 1792 give the quotient group C_32 (m=1); a(4) = 28 give C_8 x C_2 x C_2 (m=2); a(2) = 7 give C_4 x C_4 x C_2 (m=2).

MATHEMATICA

A160889[n_]:=DivisorSum[n, MoebiusMu[n/# ]*#^(4-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Aug 22 2010 *)

PROG

(PARI) vector(100, n, sumdiv(n^2, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n^2/d), 0))) \\ Altug Alkan, Oct 30 2015

CROSSREFS

Sequence in context: A146718 A146646 A096194 * A045463 A082221 A230460

Adjacent sequences:  A160886 A160887 A160888 * A160890 A160891 A160892

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Nov 19 2009

EXTENSIONS

Definition corrected by Vladeta Jovovic, Nov 21 2009

Typo in Mathematica program and formula fixed by Enrique Pérez Herrero, Oct 19 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 31 17:45 EDT 2016. Contains 275981 sequences.