login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160870
Array read by antidiagonals: T(n,k) is the number of sublattices of index n in generic k-dimensional lattice (n >= 1, k >= 1).
34
1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 7, 13, 15, 1, 1, 6, 35, 40, 31, 1, 1, 12, 31, 155, 121, 63, 1, 1, 8, 91, 156, 651, 364, 127, 1, 1, 15, 57, 600, 781, 2667, 1093, 255, 1, 1, 13, 155, 400, 3751, 3906, 10795, 3280, 511, 1, 1, 18, 130, 1395, 2801, 22932, 19531, 43435, 9841, 1023, 1
OFFSET
1,5
REFERENCES
Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]
LINKS
Michael Baake, Solution of the coincidence problem in dimensions d≤4, arXiv:math/0605222 [math.MG], 2006. [Appx. A]
B. Gruber, Alternative formulas for the number of sublattices, Acta Cryst. A53 (1997) 807-808.
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
Yi Ming Zou, Gaussian binomials and the number of sublattices, arXiv:math/0610684 [math.CO], 2006.
Yi Ming Zou, Gaussian binomials and the number of sublattices, Acta Cryst. A62 (2006) 409-410.
FORMULA
T(n,1) = 1; T(1,k) = 1; T(n, k) = Sum_{d|n} d*T(d, k-1).
From Álvar Ibeas, Oct 31 2015: (Start)
T(n,k) = Sum_{d|n} (n/d)^(k-1) * T(d, k-1).
T(Product(p^e), k) = Product(Gaussian_poly[e+k-1, e]_p).
(End)
EXAMPLE
Array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,...
1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,...
1,7,35,155,651,2667,10795,43435,174251,698027,2794155,11180715,...
1,6,31,156,781,3906,19531,97656,488281,2441406,12207031,61035156,...
...
MATHEMATICA
T[_, 1] = 1; T[1, _] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, (n/#)^(k-1) *T[#, k-1]&]; Table[T[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2015 *)
PROG
(PARI):
adu(M)=
{ /* Read by AntiDiagonals, Upwards */
local(N=matsize(M)[1]);
for (n=1, N, for(j=0, n-1, print1(M[n-j, j+1], ", ") ) );
}
T(n, k)=
{
if ( (n==1) || (k==1), return(1) );
return( sumdiv(n, d, d*T(d, k-1)) );
}
M=matrix(15, 15, n, k, T(n, k)) /* square array */
adu(M) /* sequence */
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Nov 19 2009
STATUS
approved