login
A160869
a(n) = sigma(6^(n-1)).
6
1, 12, 91, 600, 3751, 22932, 138811, 836400, 5028751, 30203052, 181308931, 1088123400, 6529545751, 39179682372, 235085301451, 1410533397600, 8463265086751, 50779784492892, 304679288612371, 1828077476115000, 10968470088963751, 65810836228506612
OFFSET
1,2
LINKS
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
FORMULA
a(n) = A059387(n)/2. - Vladimir Joseph Stephan Orlovsky, Apr 28 2010
a(n) = 12*a(n-1)-47*a(n-2)+72*a(n-3)-36*a(n-4). - Colin Barker, Nov 24 2014
G.f.: -x*(6*x^2-1) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Nov 24 2014
a(n) = A000203(A000400(n-1)). - Michel Marcus, Sep 18 2018
MATHEMATICA
Table[(2^n-1)*(3^n-1)/2, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
LinearRecurrence[{12, -47, 72, -36}, {1, 12, 91, 600}, 50] (* G. C. Greubel, Apr 30 2018 *)
PROG
(PARI) Vec(-x*(6*x^2-1)/((x-1)*(2*x-1)*(3*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Nov 24 2014
(PARI) for(n=1, 50, print1((2^n-1)*(3^n-1)/2, ", ")) \\ G. C. Greubel, Apr 30 2018
(Magma) [(2^n-1)*(3^n-1)/2: n in [1..50]]; // G. C. Greubel, Apr 30 2018
CROSSREFS
Row 6 of array in A160870.
Sequence in context: A001502 A001503 A004311 * A026074 A339715 A298397
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 15 2009
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Apr 28 2010
More terms from Colin Barker, Nov 24 2014
Better definition from Altug Alkan, Oct 06 2015
STATUS
approved