login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160866
512*P_11(n), 512 times the Legendre polynomial of order 13 at n.
1
0, 512, 2247613027, 721886012928, 35730104198198, 699102769400320, 7778198710037097, 59067959750815232, 340263076646454508, 1589596507531473408, 6299974404043220015, 21868102945021138432
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
FORMULA
G.f.: x*(512 + 2247605859*x + 690419477142*x^2 + 25828232616295*x^3 + 263754807172680*x^4 + 981682771377846*x^5 + 1503880076779332*x^6 + 981682771377846*x^7 + 263754807172680*x^8 + 25828232616295*x^9 + 690419477142*x^10 + 2247605859*x^11 + 512*x^12) / (1 - x)^14. - Colin Barker, Oct 21 2019
MATHEMATICA
Table[512*LegendreP[13, n], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
PROG
(PARI) a(n)=pollegendre(13, n)<<9 \\ Charles R Greathouse IV, Oct 26 2011
(PARI) concat(0, Vec(x*(512 + 2247605859*x + 690419477142*x^2 + 25828232616295*x^3 + 263754807172680*x^4 + 981682771377846*x^5 + 1503880076779332*x^6 + 981682771377846*x^7 + 263754807172680*x^8 + 25828232616295*x^9 + 690419477142*x^10 + 2247605859*x^11 + 512*x^12) / (1 - x)^14 + O(x^15))) \\ Colin Barker, Oct 21 2019
CROSSREFS
Sequence in context: A016941 A017013 A017097 * A017193 A017301 A017421
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2009
STATUS
approved