login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160865
128*P_11(n), 128 times the Legendre polynomial of order 11 at n.
1
0, 128, 43793863, 5765980032, 156401023862, 1935682046080, 14862118997493, 82608952539008, 363455410347052, 1339359393716352, 4294566953004035, 12309095341172608, 32166963447719778, 77797775304659072, 176169028327719217, 376942917127098240, 767724795122229848
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
From Colin Barker, Aug 04 2019: (Start)
G.f.: x*(128 + 43792327*x + 5240462124*x^2 + 90099630276*x^3 + 429789855348*x^4 + 709564273194*x^5 + 429789855348*x^6 + 90099630276*x^7 + 5240462124*x^8 + 43792327*x^9 + 128*x^10) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>11.
(End)
MATHEMATICA
Table[128*LegendreP[11, n], {n, 0, 100}] (* T. D. Noe, Mar 27 2012 *)
PROG
(PARI) a(n)=pollegendre(11, n)<<7 \\ Charles R Greathouse IV, Oct 26 2011
(PARI) concat(0, Vec(x*(128 + 43792327*x + 5240462124*x^2 + 90099630276*x^3 + 429789855348*x^4 + 709564273194*x^5 + 429789855348*x^6 + 90099630276*x^7 + 5240462124*x^8 + 43792327*x^9 + 128*x^10) / (1 - x)^12 + O(x^40))) \\ Colin Barker, Aug 04 2019
CROSSREFS
Sequence in context: A017095 A017191 A017299 * A017419 A121702 A017551
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2009
STATUS
approved