login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059387
Jordan function J_n(6) (see A059379).
4
0, 2, 24, 182, 1200, 7502, 45864, 277622, 1672800, 10057502, 60406104, 362617862, 2176246800, 13059091502, 78359364744, 470170602902, 2821066795200, 16926530173502, 101559568985784, 609358577224742, 3656154952230000
OFFSET
0,2
COMMENTS
a(n) = A000225(n) * A024023(n) = (2^n - 1) * (3^n - 1) . a(n) is the number of n-tuples of elements e_1,e_2,...,e_n in the cyclic group C_6 such that the subgroup generated by e_1,e_2,...,e_n is C_6. - Sharon Sela (sharonsela(AT)hotmail.com), Jun 02 2002
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
FORMULA
G.f.: -2*x*(6*x^2-1) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Dec 06 2012
a(n-1) = (limit of (Sum_{k>=0} (1/(6*k + 1)^s - 1/(6*k + 2)^s - 2/(6*k + 3)^s - 1/(6*k + 4)^s + 1/(6*k + 5)^s + 2/(6*k + 6)^s) as s -> n))/zeta(n)*6^(n - 1). - Mats Granvik, Nov 14 2013
a(n) = 2*A160869(n). - R. J. Mathar, Nov 23 2018
MAPLE
A059387:=n->(2^n-1)*(3^n-1); seq(A059387(n), n=0..50); # Wesley Ivan Hurt, Nov 14 2013
MATHEMATICA
Table[(2^n-1)*(3^n-1), {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
PROG
(Magma) [(2^n-1)*(3^n-1): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
(PARI) for(n=0, 30, print1((2^n-1)*(3^n-1), ", ")) \\ G. C. Greubel, Jan 29 2018
CROSSREFS
Sequence in context: A002736 A309318 A131972 * A126190 A121356 A052780
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 29 2001
STATUS
approved