login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059385
Expansion of e.g.f. sinh(cosh(x)-1), (even terms only).
1
0, 1, 1, 16, 211, 3151, 73096, 2222221, 78804181, 3328776376, 168350871991, 9890935452091, 660814861059376, 49911348691790041, 4239141233825894761, 401191146623474166976, 41953203382631444827771, 4820014734080867077534471
OFFSET
0,4
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 7th line of table.
LINKS
FORMULA
a(n) = b(2*n) where b(n) = ((-1)^n+1)/4*Sum(k=1..n/2, ((Sum(j=1..k,((Sum(i=0..j,(j-2*i)^n*binomial(j,i)))*(-1)^(k-j)*binomial(k,j) )/2^(j)))*(1-(-1)^k)/(k!))). - Vladimir Kruchinin, Apr 23 2011
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Sinh[Cosh[x] - 1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Jan 29 2018 *)
PROG
(Maxima)
a(n):=b(2*n);
b(n):=((-1)^n+1)/4*sum(((sum(((sum((j-2*i)^n*binomial(j, i), i, 0, j))*(-1)^(k-j)*binomial(k, j))/2^(j), j, 1, k))*(1-(-1)^k)/(k!)), k, 1, n/2);
/* Vladimir Kruchinin, Apr 23 2011 */
(PARI) x='x+O('x^50); v=Vec(serlaplace(sinh(cosh(x)-1))); concat([0], vector(#v\2, n, v[2*n-1])) \\ G. C. Greubel, Jan 29 2018
CROSSREFS
Sequence in context: A295712 A319236 A222447 * A009440 A284226 A282395
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2001
STATUS
approved