The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059385 Expansion of e.g.f. sinh(cosh(x)-1), (even terms only). 1
 0, 1, 1, 16, 211, 3151, 73096, 2222221, 78804181, 3328776376, 168350871991, 9890935452091, 660814861059376, 49911348691790041, 4239141233825894761, 401191146623474166976, 41953203382631444827771, 4820014734080867077534471 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 7th line of table. LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 FORMULA a(n) = b(2*n) where b(n) = ((-1)^n+1)/4*Sum(k=1..n/2, ((Sum(j=1..k,((Sum(i=0..j,(j-2*i)^n*binomial(j,i)))*(-1)^(k-j)*binomial(k,j) )/2^(j)))*(1-(-1)^k)/(k!))). - Vladimir Kruchinin, Apr 23 2011 MATHEMATICA With[{nn = 50}, CoefficientList[Series[Sinh[Cosh[x] - 1], {x, 0, nn}], x] Range[0, nn]!][[1 ;; ;; 2]] (* G. C. Greubel, Jan 29 2018 *) PROG (Maxima) a(n):=b(2*n); b(n):=((-1)^n+1)/4*sum(((sum(((sum((j-2*i)^n*binomial(j, i), i, 0, j))*(-1)^(k-j)*binomial(k, j))/2^(j), j, 1, k))*(1-(-1)^k)/(k!)), k, 1, n/2); /* Vladimir Kruchinin, Apr 23 2011 */ (PARI) x='x+O('x^50); v=Vec(serlaplace(sinh(cosh(x)-1))); concat([0], vector(#v\2, n, v[2*n-1])) \\ G. C. Greubel, Jan 29 2018 CROSSREFS Sequence in context: A295712 A319236 A222447 * A009440 A284226 A282395 Adjacent sequences: A059382 A059383 A059384 * A059386 A059387 A059388 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 28 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 22:19 EDT 2024. Contains 374257 sequences. (Running on oeis4.)