login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059382
Product J_3(i), i=1..n.
8
1, 7, 182, 10192, 1263808, 230013056, 78664465152, 35241680388096, 24739659632443392, 21474024560960864256, 28560452666077949460480, 41584019081809494414458880, 91318505903653649734151700480, 218616503133346837463559170949120
OFFSET
1,2
COMMENTS
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^3 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..100
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
Eric Weisstein's World of Mathematics, Le Paige's Theorem
MATHEMATICA
JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059382[n_]:=Times@@(JordanTotient[#, 3]&/@Range[n]); (* Enrique Pérez Herrero, Aug 06 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2001
STATUS
approved