The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302904 Number of permutations of [2n] having exactly n-1 alternating descents. 3
 1, 1, 7, 182, 8699, 704834, 84889638, 14322115212, 3216832016019, 928559550102410, 334876925319944690, 147563833511292247796, 78009671642511668089822, 48728981875112003682759892, 35506576774281843111748649644, 29848802048200930275501944893080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(0) = 1 by convention. Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132. FORMULA a(n) = A145876(2n,n) = A302905(2n) for n > 0. a(n) ~ sqrt(3) * 2^(2*n + 1) * n^(2*n) / (sqrt(5) * exp(2*n)). - Vaclav Kotesovec, Apr 29 2018 EXAMPLE a(2) = 7: 1234, 1432, 2431, 3214, 3421, 4213, 4312. MAPLE b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,        add(b(o+j-1, u-j)*x, j=1..u)+        add(b(o-j, u-1+j),   j=1..o)))     end: a:= n-> coeff(b(2*n, 0), x, n): seq(a(n), n=0..20); MATHEMATICA b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,     Sum[b[o + j - 1, u - j] x, {j, 1, u}] +     Sum[b[o - j, u - 1 + j],   {j, 1, o}]]]; a[n_] := Coefficient[b[2 n, 0], x, n]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *) CROSSREFS Bisection (even part) of A302905. Cf. A145876. Sequence in context: A068339 A219404 A202026 * A059382 A158620 A217242 Adjacent sequences:  A302901 A302902 A302903 * A302905 A302906 A302907 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 20:25 EST 2021. Contains 349435 sequences. (Running on oeis4.)