login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302904
Number of permutations of [2n] having exactly n-1 alternating descents.
3
1, 1, 7, 182, 8699, 704834, 84889638, 14322115212, 3216832016019, 928559550102410, 334876925319944690, 147563833511292247796, 78009671642511668089822, 48728981875112003682759892, 35506576774281843111748649644, 29848802048200930275501944893080
OFFSET
0,3
COMMENTS
a(0) = 1 by convention.
Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1).
LINKS
D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
FORMULA
a(n) = A145876(2n,n) = A302905(2n) for n > 0.
a(n) ~ sqrt(3) * 2^(2*n + 1) * n^(2*n) / (sqrt(5) * exp(2*n)). - Vaclav Kotesovec, Apr 29 2018
EXAMPLE
a(2) = 7: 1234, 1432, 2431, 3214, 3421, 4213, 4312.
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(o+j-1, u-j)*x, j=1..u)+
add(b(o-j, u-1+j), j=1..o)))
end:
a:= n-> coeff(b(2*n, 0), x, n):
seq(a(n), n=0..20);
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,
Sum[b[o + j - 1, u - j] x, {j, 1, u}] +
Sum[b[o - j, u - 1 + j], {j, 1, o}]]];
a[n_] := Coefficient[b[2 n, 0], x, n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
Bisection (even part) of A302905.
Cf. A145876.
Sequence in context: A068339 A219404 A202026 * A059382 A158620 A217242
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2018
STATUS
approved