OFFSET
0,2
COMMENTS
Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100
D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
FORMULA
a(n) ~ sqrt(3) * 2^(2*n + 2) * n^(2*n + 1) / (sqrt(5) * exp(2*n)). - Vaclav Kotesovec, Apr 29 2018
EXAMPLE
a(1) = 2: 123, 321.
a(2) = 36: 12345, 12543, 13542, 14325, 14532, 15324, 15423, 21354, 21453, 23541, 24315, 24531, 25314, 25413, 31254, 31452, 32145, 32451, 34215, 34521, 35214, 35412, 41253, 41352, 42135, 42351, 43125, 45213, 45312, 51243, 51342, 52134, 52341, 53124, 54123, 54321.
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(o+j-1, u-j)*x, j=1..u)+
add(b(o-j, u-1+j), j=1..o)))
end:
a:= n-> coeff(b(2*n+1, 0), x, n+1):
seq(a(n), n=0..20);
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,
Sum[b[o + j - 1, u - j]*x, {j, 1, u}] +
Sum[b[o - j, u - 1 + j], {j, 1, o}]]];
a[n_] := Coefficient[b[2n + 1, 0], x, n + 1];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2018
STATUS
approved