login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302903
Number of permutations of [2n+1] having exactly n alternating descents.
3
1, 2, 36, 1196, 76840, 7570716, 1085246904, 211595659320, 53984412657360, 17440458896525180, 6960292943873805976, 3362366089440205308072, 1933633403768889597292336, 1305355624659052356741634136, 1022196734801743485304805455920, 919035074839303194470918726496240
OFFSET
0,2
COMMENTS
Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1).
LINKS
D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
FORMULA
a(n) = A145876(2n+1,n+1) = A302905(2n+1).
a(n) ~ sqrt(3) * 2^(2*n + 2) * n^(2*n + 1) / (sqrt(5) * exp(2*n)). - Vaclav Kotesovec, Apr 29 2018
EXAMPLE
a(1) = 2: 123, 321.
a(2) = 36: 12345, 12543, 13542, 14325, 14532, 15324, 15423, 21354, 21453, 23541, 24315, 24531, 25314, 25413, 31254, 31452, 32145, 32451, 34215, 34521, 35214, 35412, 41253, 41352, 42135, 42351, 43125, 45213, 45312, 51243, 51342, 52134, 52341, 53124, 54123, 54321.
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(o+j-1, u-j)*x, j=1..u)+
add(b(o-j, u-1+j), j=1..o)))
end:
a:= n-> coeff(b(2*n+1, 0), x, n+1):
seq(a(n), n=0..20);
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,
Sum[b[o + j - 1, u - j]*x, {j, 1, u}] +
Sum[b[o - j, u - 1 + j], {j, 1, o}]]];
a[n_] := Coefficient[b[2n + 1, 0], x, n + 1];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
Bisection (odd part) of A302905.
Cf. A145876.
Sequence in context: A375839 A305596 A210899 * A259467 A003092 A187535
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2018
STATUS
approved