login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302900
Number of permutations of [n] having exactly seven alternating descents.
2
1385, 21682, 350240, 4945368, 70145634, 992272308, 14322115212, 211595659320, 3216832016019, 50412205403030, 815486339550108, 13622914005990480, 235041722344009380, 4187522527966916520, 77010173788311008040, 1461190162226869057872, 28588437379997078589117
OFFSET
8,1
COMMENTS
Index i is an alternating descent of permutation p if either i is odd and p(i) > p(i+1), or i is even and p(i) < p(i+1).
LINKS
D. Chebikin, Variations on descents and inversions in permutations, The Electronic J. of Combinatorics, 15 (2008), #R132.
FORMULA
a(n) ~ (4 - Pi)^7 * 2^(n + 5/2) * n^(n + 15/2) / (7! * Pi^(n + 15/2) * exp(n)). - Vaclav Kotesovec, Apr 29 2018
E.g.f.: (5040*cos(x)^4 + (7*x^6 - 84*x^5 + 630*x^4 - 3360*x^3 + 12600*x^2 - 30240*x + 5040*sin(x) + 15120)*cos(x)^3 + ((x^7 - 14*x^6 + 126*x^5 - 840*x^4 + 4200*x^3 - 15120*x^2 + 35280*x - 20160)*sin(x) + 60*x^7 - 840*x^6 + 5544*x^5 - 23520*x^4 + 67200*x^3 - 120960*x^2 + 105840*x - 40320)*cos(x)^2 + ((- 196*x^6 + 2352*x^5 - 12600*x^4 + 40320*x^3 - 75600*x^2 + 60480*x - 20160)*sin(x) - 434*x^6 + 5208*x^5 - 25200*x^4 + 60480*x^3 - 75600*x^2 + 60480*x - 20160)*cos(x) + (- 298*x^7 + 4172*x^6 - 25200*x^5 + 85680*x^4 - 176400*x^3 + 211680*x^2 - 141120*x + 40320)*sin(x) - 332*x^7 + 4648*x^6 - 27720*x^5 + 90720*x^4 - 176400*x^3 + 211680*x^2 - 141120*x + 40320)/(5040*cos(x)^4 + (20160*sin(x) - 40320)*cos(x)^2 - 40320*sin(x) + 40320). - Vaclav Kotesovec, Apr 30 2018
MAPLE
b:= proc(u, o) option remember; series(`if`(u+o=0, 1,
add(b(o+j-1, u-j)*x, j=1..u)+
add(b(o-j, u-1+j), j=1..o)), x, 9)
end:
a:= n-> coeff(b(n, 0), x, 8):
seq(a(n), n=8..30);
MATHEMATICA
nmax = 30; Drop[CoefficientList[Series[(5040*Cos[x]^4 + (7*x^6 - 84*x^5 + 630*x^4 - 3360*x^3 + 12600*x^2 - 30240*x + 5040*Sin[x] + 15120)*Cos[x]^3 + ((x^7 - 14*x^6 + 126*x^5 - 840*x^4 + 4200*x^3 - 15120*x^2 + 35280*x - 20160)*Sin[x] + 60*x^7 - 840*x^6 + 5544*x^5 - 23520*x^4 + 67200*x^3 - 120960*x^2 + 105840*x - 40320)*Cos[x]^2 + ((- 196*x^6 + 2352*x^5 - 12600*x^4 + 40320*x^3 - 75600*x^2 + 60480*x - 20160)*Sin[x] - 434*x^6 + 5208*x^5 - 25200*x^4 + 60480*x^3 - 75600*x^2 + 60480*x - 20160)*Cos[x] + (- 298*x^7 + 4172*x^6 - 25200*x^5 + 85680*x^4 - 176400*x^3 + 211680*x^2 - 141120*x + 40320)*Sin[x] - 332*x^7 + 4648*x^6 - 27720*x^5 + 90720*x^4 - 176400*x^3 + 211680*x^2 - 141120*x + 40320)/(5040*Cos[x]^4 + (20160*Sin[x] - 40320)*Cos[x]^2 - 40320*Sin[x] + 40320), {x, 0, nmax}], x] * Range[0, nmax]!, 8] (* Vaclav Kotesovec, Apr 30 2018 *)
CROSSREFS
Column k=8 of A145876.
Sequence in context: A336192 A345526 A345780 * A317284 A060062 A181991
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2018
STATUS
approved