login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059384
a(n) = Product_{i=1..n} J_5(i).
6
1, 31, 7502, 7441984, 23248758016, 174412182636032, 2931171141381153792, 93047096712003345973248, 5471727569246068763302821888, 529903984716066283313298482921472, 85341036738522474927606720674503065600, 20487310643596659421020979792003903940198400
OFFSET
1,2
COMMENTS
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^5 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.
LINKS
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
Eric Weisstein's World of Mathematics, Le Paige's Theorem
MATHEMATICA
JordanTotient[n_Integer, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := Times @@ (JordanTotient[#, 5] & /@ Range[n]); (* Enrique Pérez Herrero *) Array[f, 11] (* Robert G. Wilson v, Oct 08 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2001
STATUS
approved