Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jun 01 2022 09:43:19
%S 1,31,7502,7441984,23248758016,174412182636032,2931171141381153792,
%T 93047096712003345973248,5471727569246068763302821888,
%U 529903984716066283313298482921472,85341036738522474927606720674503065600,20487310643596659421020979792003903940198400
%N a(n) = Product_{i=1..n} J_5(i).
%C a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^5 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.
%H G. C. Greubel, <a href="/A059384/b059384.txt">Table of n, a(n) for n = 1..120</a>
%H Antal Bege, <a href="http://www.emis.de/journals/AUSM/C1-1/MATH1-4.PDF">Hadamard product of GCD matrices</a>, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LePaigesTheorem.html">Le Paige's Theorem</a>
%t JordanTotient[n_Integer, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := Times @@ (JordanTotient[#, 5] & /@ Range[n]); (* _Enrique Pérez Herrero_ *) Array[f, 11] (* _Robert G. Wilson v_, Oct 08 2011 *)
%Y Cf. A001088, A059378, A059381, A059382, A059383, A175836.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Jan 28 2001