login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209172
Triangle of coefficients of polynomials u(n,x) jointly generated with A209413; see the Formula section.
3
1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 6, 11, 15, 1, 1, 7, 23, 26, 31, 1, 1, 9, 30, 72, 57, 63, 1, 1, 10, 48, 102, 201, 120, 127, 1, 1, 12, 58, 198, 303, 522, 247, 255, 1, 1, 13, 82, 256, 699, 825, 1291, 502, 511, 1, 1, 15, 95, 420, 955, 2223, 2116, 3084, 1013, 1023, 1
OFFSET
1,5
COMMENTS
For n > 1, n-th alternating row sum = ((-1)^n)*F(2n-4), where F=A000045 (Fibonacci numbers). For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 11 2012
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 11 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-2) with T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+x-3*y*x-2*y*x^2+2*y^2*x^2)/(1-3*y*x-x^2+2*y^2*x^2). (End)
EXAMPLE
First five rows:
1;
1, 1;
1, 3, 1;
1, 4, 7, 1;
1, 6, 11, 15, 1;
First three polynomials v(n,x):
1
1 + x
1 + 3x + x^2.
From Philippe Deléham, Mar 11 2012: (Start)
(1, 0, 1, -2, 0, 0, 0,...) DELTA (0, 1, 0, 2, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 4, 7, 1, 0;
1, 6, 11, 15, 1, 0;
1, 7, 23, 26, 31, 1, 0;
1, 9, 30, 72, 57, 63, 1, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209172 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209413 *)
CROSSREFS
Sequence in context: A209415 A058879 A208344 * A263950 A160870 A345279
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 08 2012
STATUS
approved