OFFSET
1,5
COMMENTS
For n > 1, n-th alternating row sum = ((-1)^n)*F(2n-4), where F=A000045 (Fibonacci numbers). For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 11 2012
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 11 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-2) with T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+x-3*y*x-2*y*x^2+2*y^2*x^2)/(1-3*y*x-x^2+2*y^2*x^2). (End)
EXAMPLE
First five rows:
1;
1, 1;
1, 3, 1;
1, 4, 7, 1;
1, 6, 11, 15, 1;
First three polynomials v(n,x):
1
1 + x
1 + 3x + x^2.
From Philippe Deléham, Mar 11 2012: (Start)
(1, 0, 1, -2, 0, 0, 0,...) DELTA (0, 1, 0, 2, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 4, 7, 1, 0;
1, 6, 11, 15, 1, 0;
1, 7, 23, 26, 31, 1, 0;
1, 9, 30, 72, 57, 63, 1, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209172 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209413 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 08 2012
STATUS
approved