Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 24 2020 03:29:52
%S 1,1,1,1,3,1,1,4,7,1,1,6,11,15,1,1,7,23,26,31,1,1,9,30,72,57,63,1,1,
%T 10,48,102,201,120,127,1,1,12,58,198,303,522,247,255,1,1,13,82,256,
%U 699,825,1291,502,511,1,1,15,95,420,955,2223,2116,3084,1013,1023,1
%N Triangle of coefficients of polynomials u(n,x) jointly generated with A209413; see the Formula section.
%C For n > 1, n-th alternating row sum = ((-1)^n)*F(2n-4), where F=A000045 (Fibonacci numbers). For a discussion and guide to related arrays, see A208510.
%C Subtriangle of the triangle given by (1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 11 2012
%F u(n,x) = x*u(n-1,x) + v(n-1,x),
%F v(n,x) = u(n-1,x) + 2x*v(n-1,x),
%F where u(1,x)=1, v(1,x)=1.
%F From _Philippe Deléham_, Mar 11 2012: (Start)
%F As DELTA-triangle T(n,k) with 0 <= k <= n:
%F T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-2) with T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n.
%F G.f.: (1+x-3*y*x-2*y*x^2+2*y^2*x^2)/(1-3*y*x-x^2+2*y^2*x^2). (End)
%e First five rows:
%e 1;
%e 1, 1;
%e 1, 3, 1;
%e 1, 4, 7, 1;
%e 1, 6, 11, 15, 1;
%e First three polynomials v(n,x):
%e 1
%e 1 + x
%e 1 + 3x + x^2.
%e From _Philippe Deléham_, Mar 11 2012: (Start)
%e (1, 0, 1, -2, 0, 0, 0,...) DELTA (0, 1, 0, 2, 0, 0, ...) begins:
%e 1;
%e 1, 0;
%e 1, 1, 0;
%e 1, 3, 1, 0;
%e 1, 4, 7, 1, 0;
%e 1, 6, 11, 15, 1, 0;
%e 1, 7, 23, 26, 31, 1, 0;
%e 1, 9, 30, 72, 57, 63, 1, 0; (End)
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
%t v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A209172 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A209413 *)
%Y Cf. A209413, A208510.
%K nonn,tabl
%O 1,5
%A _Clark Kimberling_, Mar 08 2012