login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209415 Triangle of coefficients of polynomials u(n,x) jointly generated with A209416; see the Formula section. 6
1, 1, 1, 1, 3, 1, 1, 4, 6, 1, 1, 6, 11, 10, 1, 1, 7, 21, 25, 15, 1, 1, 9, 30, 57, 50, 21, 1, 1, 10, 45, 99, 133, 91, 28, 1, 1, 12, 58, 168, 275, 280, 154, 36, 1, 1, 13, 78, 250, 523, 675, 546, 246, 45, 1, 1, 15, 95, 370, 885, 1433, 1509, 1002, 375, 55, 1, 1, 16, 120, 505, 1435, 2718, 3564, 3135, 1749, 550, 66, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

For a discussion and guide to related arrays, see A208510.

Subtriangle of the triangle given by (1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012

Up to reflection at the vertical axis, the triangle of numbers given here coincides with the triangle given in A208334, i.e., the numbers are the same just read row-wise in the opposite direction. - Christine Bessenrodt, Jul 21 2012

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flatened

FORMULA

u(n,x) = x*u(n-1,x) + v(n-1,x),

v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),

where u(1,x)=1, v(1,x)=1.

From Philippe Deléham, Apr 02 2012: (Start)

As DELTA-triangle T(n,k) with 0 <= k <= n:

G.f.: (1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2).

T(n,k) = 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

EXAMPLE

First five rows:

  1;

  1,  1;

  1,  3,  1;

  1,  4,  6,  1;

  1,  6, 11, 10,  1;

First three polynomials v(n,x): 1, 1 + x, 1 + 3x + x^2.

From Philippe Deléham, Apr 02 2012: (Start)

(1, 0, 1, -2, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, ...) begins:

  1;

  1,   0;

  1,   1,   0;

  1,   3,   1,   0;

  1,   4,   6,   1,   0;

  1,   6,  11,  10,   1,   0;

  1,   7,  21,  25,  15,   1,   0;

  1,   9,  30,  57,  50,  21,   1,   0;

  1,  10,  45,  99, 133,  91,  28,   1,   0; (End)

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];

v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];

Table[Expand[u[n, x]], {n, 1, z/2}]

Table[Expand[v[n, x]], {n, 1, z/2}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]    (* A209415 *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]    (* A209416 *)

CoefficientList[CoefficientList[Series[(1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)

CROSSREFS

Cf. A209416, A208510, A208334.

Sequence in context: A133380 A343168 A105687 * A058879 A208344 A209172

Adjacent sequences:  A209412 A209413 A209414 * A209416 A209417 A209418

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Mar 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 02:40 EST 2021. Contains 349469 sequences. (Running on oeis4.)