login
A105687
Number of inequivalent codes attaining highest minimal Hamming distance of any Type 4^H+ Hermitian additive self-dual code over GF(4) of length n.
2
1, 1, 1, 3, 1, 1, 4, 5, 8, 120, 1, 1
OFFSET
1,4
REFERENCES
C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, in International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math. 6 (2001), 10 pp.
P. Gaborit, W. C. Huffman, J.-L. Kim and V. S. Pless, On additive GF(4) codes, in Codes and Association Schemes (Piscataway, NJ, 1999), A. Barg and S. Litsyn, eds., Amer. Math. Soc., Providence, RI, 2001, pp. 135-149.
G. Hoehn, Self-dual codes over the Kleinian four-group, Math. Ann. 327 (2003), 227-255.
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
CROSSREFS
A016729 gives the minimal distance of these codes.
A094927 gives the number of inequivalent codes of any distance.
Sequence in context: A131238 A133380 A343168 * A209415 A058879 A208344
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 06 2005
EXTENSIONS
Corrected and extended to 12 terms by Lars Eirik Danielsen (larsed(AT)ii.uib.no) and Matthew G. Parker (matthew(AT)ii.uib.no), Jun 30 2005
STATUS
approved