|
|
A105681
|
|
Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z.
|
|
19
|
|
|
2, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 4, 4, 6, 6, 8, 6, 8, 6, 8, 8, 8, 10, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..24.
S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
P. Gaborit, Tables of Self-Dual Codes
W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
|
|
CROSSREFS
|
Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105682.
See A105688 for the number of such codes. Cf. also A066012.
Sequence in context: A309441 A220498 A330772 * A240039 A130127 A217982
Adjacent sequences: A105678 A105679 A105680 * A105682 A105683 A105684
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
N. J. A. Sloane, May 06 2005
|
|
STATUS
|
approved
|
|
|
|