The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105688 Number of codes having highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z. 2
1, 1, 1, 1, 2, 1, 1, 1, 11, 5, 3, 39, 8, 1, 15 (list; graph; refs; listen; history; text; internal format)



Table of n, a(n) for n=1..15.

S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.

P. Gaborit, Tables of Self-Dual Codes

W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).


Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.

Cf. A105681 for minimal Lee distances of these codes. See also A066012-A066017.

Sequence in context: A179930 A007737 A229243 * A066017 A236938 A079834

Adjacent sequences:  A105685 A105686 A105687 * A105689 A105690 A105691




N. J. A. Sloane, Dec 11 2001



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 09:10 EDT 2021. Contains 347630 sequences. (Running on oeis4.)