OFFSET
0,9
LINKS
Alois P. Heinz, Antidiagonals n = 0..30, flattened
FORMULA
A(n,k) = (n*k)! * [x^(n*k)] exp(Sum_{j=1..n} x^j/j!).
A(n,k) = A229223(n*k,n).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 10, 76, 764, 9496, ...
1, 5, 166, 12644, 1680592, 341185496, ...
1, 15, 3795, 3305017, 6631556521, 25120541332271, ...
1, 52, 112124, 1245131903, 41916097982471, 3282701194678476257, ...
MAPLE
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
A:= (n, k)-> G(n*k, n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n-k, k]; For[j = k-1, j >= 1, j--, g = g*(n-j)/j + G[n-j, k] ]; g ] ]; A[n_, k_] := G[n*k, n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 17 2013
STATUS
approved