login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229228
Number of set partitions of {1,...,2n} into sets of size at most n.
3
1, 1, 10, 166, 3795, 112124, 4163743, 190168577, 10468226150, 681863474058, 51720008131148, 4506628734688128, 445956917001833090, 49631199898024188422, 6160538225093750695800, 846748983034696433927334, 128064669166890886264698699, 21195039362681903376709497444
OFFSET
0,3
LINKS
FORMULA
a(n) = (2n)! * [x^(2n)] exp(Sum_{j=1..n} x^j/j!).
a(n) = A229223(2n,n).
EXAMPLE
a(2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
MAPLE
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(2*n, n):
seq(a(n), n=0..20);
MATHEMATICA
G[n_, k_] := G[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[G[n - k*j, k - 1]*n!/ k!^j/(n - k*j)!/j!, {j, 0, n/k}]]];
Table[G[2n, n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
CROSSREFS
Column k=2 of A229243.
Cf. A229223.
Sequence in context: A305604 A367444 A054688 * A112650 A006295 A006297
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 16 2013
STATUS
approved