login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229223 Number G(n,k) of set partitions of {1,...,n} into sets of size at most k; triangle G(n,k), n>=0, 0<=k<=n, read by rows. 19
1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 10, 14, 15, 0, 1, 26, 46, 51, 52, 0, 1, 76, 166, 196, 202, 203, 0, 1, 232, 652, 827, 869, 876, 877, 0, 1, 764, 2780, 3795, 4075, 4131, 4139, 4140, 0, 1, 2620, 12644, 18755, 20645, 21065, 21137, 21146, 21147 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
John Riordan calls these Allied Bell Numbers. - N. J. A. Sloane, Jan 10 2018
G(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. G(n,k) = G(n,n) = A000110(n) for k>n.
G(n,k) - G(n,k-1) = A080510(n,k).
A column G(n>=0,k) can be generated by a linear recurrence with polynomial coefficients, where the initial terms correspond with A000110, and the coefficients contain constant factors derived from A008279 (cf. recg(k) in the fourth Maple program below). - Georg Fischer, May 19 2021
LINKS
J. Riordan, Letter, 11/23/1970
FORMULA
G(0,k) = 1, G(n,k) = 0 for n>0 and k<1, otherwise G(n,k) = Sum_{j=0..floor(n/k)} G(n-k*j,k-1) * n!/(k!^j*(n-k*j)!*j!).
G(n,k) = G(n-1,k) +(n-1)/1 *(G(n-2,k) +(n-2)/2 *(G(n-3,k) +(n-3)/3 *(G(n-4,k) + ... +(n-(k-1))/(k-1) *G(n-k,k)...))).
E.g.f. of column k: exp(Sum_{j=1..k} x^j/j!).
EXAMPLE
G(4,2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
Triangle G(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 4, 5;
0, 1, 10, 14, 15,
0, 1, 26, 46, 51, 52;
0, 1, 76, 166, 196, 202, 203;
0, 1, 232, 652, 827, 869, 876, 877;
0, 1, 764, 2780, 3795, 4075, 4131, 4139, 4140;
...
MAPLE
G:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1, 0,
add(G(n-k*j, k-1) *n!/k!^j/(n-k*j)!/j!, j=0..n/k)))
end:
seq(seq(G(n, k), k=0..n), n=0..10);
# second Maple program:
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
seq(seq(G(n, k), k=0..n), n=0..10);
# third Maple program:
G:= proc(n, k) option remember; `if`(n=0, 1, add(
G(n-i, k)*binomial(n-1, i-1), i=1..min(n, k)))
end:
seq(seq(G(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 26 2017
# fourth Maple program (for columns G(n>=0, k)):
init := n -> seq(a(j) = combinat:-bell(j), j=0..n): # A000110
b := (n, k) -> mul((n - j)/(j + 1), j = 0..k-1):
recg := k -> {(k-1)!*(add(j*b(n, j)*a(n-j), j = 1..k) - n*a(n)), init(k-1)}:
column := proc(k, len) local f; f := gfun:-rectoproc(recg(k), a(n), remember):
map(f, [$0..len-1]) end:
seq(print(column(k, 12)), k=1..9); # Georg Fischer, May 19 2021
MATHEMATICA
g[n_, k_] := g[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[g[n - k*j, k - 1] *n!/k!^j/(n - k*j)!/j!, { j, 0, n/k}]]]; Table[Table[g[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
Main diagonal gives: A000110. Lower diagonal gives: A058692.
Cf. A066223 (G(2n,2)), A229228 (G(2n,n)), A229229 (G(n^2,n)), A227223 (G(2^n,n)).
Sequence in context: A349740 A327117 A359107 * A128749 A106579 A287318
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 16 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 12:08 EDT 2024. Contains 371912 sequences. (Running on oeis4.)