login
A229223
Number G(n,k) of set partitions of {1,...,n} into sets of size at most k; triangle G(n,k), n>=0, 0<=k<=n, read by rows.
19
1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 10, 14, 15, 0, 1, 26, 46, 51, 52, 0, 1, 76, 166, 196, 202, 203, 0, 1, 232, 652, 827, 869, 876, 877, 0, 1, 764, 2780, 3795, 4075, 4131, 4139, 4140, 0, 1, 2620, 12644, 18755, 20645, 21065, 21137, 21146, 21147
OFFSET
0,6
COMMENTS
John Riordan calls these Allied Bell Numbers. - N. J. A. Sloane, Jan 10 2018
G(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. G(n,k) = G(n,n) = A000110(n) for k>n.
G(n,k) - G(n,k-1) = A080510(n,k).
A column G(n>=0,k) can be generated by a linear recurrence with polynomial coefficients, where the initial terms correspond with A000110, and the coefficients contain constant factors derived from A008279 (cf. recg(k) in the fourth Maple program below). - Georg Fischer, May 19 2021
LINKS
J. Riordan, Letter, 11/23/1970
FORMULA
G(0,k) = 1, G(n,k) = 0 for n>0 and k<1, otherwise G(n,k) = Sum_{j=0..floor(n/k)} G(n-k*j,k-1) * n!/(k!^j*(n-k*j)!*j!).
G(n,k) = G(n-1,k) +(n-1)/1 *(G(n-2,k) +(n-2)/2 *(G(n-3,k) +(n-3)/3 *(G(n-4,k) + ... +(n-(k-1))/(k-1) *G(n-k,k)...))).
E.g.f. of column k: exp(Sum_{j=1..k} x^j/j!).
EXAMPLE
G(4,2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
Triangle G(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 4, 5;
0, 1, 10, 14, 15,
0, 1, 26, 46, 51, 52;
0, 1, 76, 166, 196, 202, 203;
0, 1, 232, 652, 827, 869, 876, 877;
0, 1, 764, 2780, 3795, 4075, 4131, 4139, 4140;
...
MAPLE
G:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1, 0,
add(G(n-k*j, k-1) *n!/k!^j/(n-k*j)!/j!, j=0..n/k)))
end:
seq(seq(G(n, k), k=0..n), n=0..10);
# second Maple program:
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
seq(seq(G(n, k), k=0..n), n=0..10);
# third Maple program:
G:= proc(n, k) option remember; `if`(n=0, 1, add(
G(n-i, k)*binomial(n-1, i-1), i=1..min(n, k)))
end:
seq(seq(G(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 26 2017
# fourth Maple program (for columns G(n>=0, k)):
init := n -> seq(a(j) = combinat:-bell(j), j=0..n): # A000110
b := (n, k) -> mul((n - j)/(j + 1), j = 0..k-1):
recg := k -> {(k-1)!*(add(j*b(n, j)*a(n-j), j = 1..k) - n*a(n)), init(k-1)}:
column := proc(k, len) local f; f := gfun:-rectoproc(recg(k), a(n), remember):
map(f, [$0..len-1]) end:
seq(print(column(k, 12)), k=1..9); # Georg Fischer, May 19 2021
MATHEMATICA
g[n_, k_] := g[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[g[n - k*j, k - 1] *n!/k!^j/(n - k*j)!/j!, { j, 0, n/k}]]]; Table[Table[g[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
Main diagonal gives: A000110. Lower diagonal gives: A058692.
Cf. A066223 (G(2n,2)), A229228 (G(2n,n)), A229229 (G(n^2,n)), A227223 (G(2^n,n)).
Sequence in context: A349740 A327117 A359107 * A128749 A106579 A287318
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 16 2013
STATUS
approved