|
|
A229220
|
|
a(n) = a(n-1)^2 + (-1)^n with a(1)=1.
|
|
0
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
From the 4th element, the sum of the digits (modulo 9) of each term gives the sequence A000035.
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ c^(2^n), where c = 1.15442119601942274770665172928641533277.... - Vaclav Kotesovec, Oct 09 2013
|
|
MAPLE
|
a := proc (n) if n = 1 then 1 else a(n-1)^2+(-1)^n end if end proc:
seq(a(i), i = 1 .. 10);
|
|
MATHEMATICA
|
RecurrenceTable[{a[n] == a[n-1]^2 + (-1)^n, a[1]==1}, a, {n, 1, 10}] (* Vaclav Kotesovec, Oct 09 2013 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|