login
A270356
Denominators of r-Egyptian fraction expansion for log(2), where r = (1, 1/2, 1/4, 1/8, ...)
1
2, 3, 10, 85, 6297, 105324757, 10291333539500676, 72129634294824118806681649563665, 3614136206345221874912341551952565198060297016360952863886217259
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
log(2) = 1/2 + 1/(2*3) + 1/(4*10) + ...
MATHEMATICA
r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = Log(2); Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 2/2^k;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=log(2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
CROSSREFS
Cf. A269993.
Sequence in context: A291935 A088222 A184249 * A333332 A229220 A155148
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 17 2016
STATUS
approved