The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270357 Denominators of r-Egyptian fraction expansion for the Euler-Mascheroni constant, where r = (1, 1/2, 1/4, 1/8, ...) 1
 2, 7, 44, 1188, 1107451, 1655310214489, 4507412592442565132297462, 21590918158669845303602195101212593993014272683073, 535939144392644394939678701363249006606218981708849983487820117907080422754959222872984260614611702 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x. See A269993 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 1..11 Eric Weisstein's World of Mathematics, Egyptian Fraction Index entries for sequences related to Egyptian fractions EXAMPLE Euler-Mascheroni constant = 1/2 + 1/(2*7) + 1/(4*44) + ... MATHEMATICA r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = EulerGamma; Table[n[x, k], {k, 1, z}] PROG (PARI) r(k) = 2/2^k; f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); ); a(k, x=Euler) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016 CROSSREFS Cf. A269993. Sequence in context: A107354 A006118 A083670 * A367787 A108240 A064606 Adjacent sequences: A270354 A270355 A270356 * A270358 A270359 A270360 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Mar 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 19:36 EDT 2024. Contains 374252 sequences. (Running on oeis4.)