login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270357
Denominators of r-Egyptian fraction expansion for the Euler-Mascheroni constant, where r = (1, 1/2, 1/4, 1/8, ...)
1
2, 7, 44, 1188, 1107451, 1655310214489, 4507412592442565132297462, 21590918158669845303602195101212593993014272683073, 535939144392644394939678701363249006606218981708849983487820117907080422754959222872984260614611702
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
Euler-Mascheroni constant = 1/2 + 1/(2*7) + 1/(4*44) + ...
MATHEMATICA
r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = EulerGamma; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 2/2^k;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=Euler) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
CROSSREFS
Cf. A269993.
Sequence in context: A107354 A006118 A083670 * A367787 A108240 A064606
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 17 2016
STATUS
approved