login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083670
Number of different antisymmetric relations on n unlabeled points.
4
1, 2, 7, 44, 558, 16926, 1319358, 269695440, 146202099255, 212360894456310, 834625722216941739, 8954592469138636320960, 264305834899495393164591240, 21607243912704793462806305720502, 4921054357098031770205099867497197328
OFFSET
0,2
LINKS
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
FORMULA
Euler transform of A101460. - Andrew Howroyd, Oct 24 2019
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]] - 1, 2], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p]*2^Length[p], {p, IntegerPartitions[n]}]; s/n!];
a /@ Range[0, 14] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
PROG
(GAP) f := function(n) local s, m, c, t, x, a, j; s := 0; m := [1..n]; c := Combinations(m, 2); t := Tuples(m, 2); for x in ConjugacyClasses(SymmetricGroup(n)) do a := Representative(x); j := Length(Cycles(a, m)); s := s+Size(x)*2^j*3^(Length(Cycles(a, t, OnPairs))-Length(Cycles(a, c, OnSets))-j); od; return s/Factorial(n); end;
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)*2^#p); s/n!} \\ Andrew Howroyd, Oct 24 2019
CROSSREFS
Cf. A083667 (labeled antisymmetric relations).
Sequence in context: A356613 A107354 A006118 * A270357 A367787 A108240
KEYWORD
easy,nonn
AUTHOR
Goetz Pfeiffer (Goetz.Pfeiffer(AT)nuigalway.ie), May 02 2003
STATUS
approved