The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270358 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r = (1, 1/2, 1/4, 1/8, ...). 2
 2, 2, 6, 62, 3526, 6487141, 39385964848219, 870200535339836766981506923, 7107112253865886739857942326428066600374758700504057908, 51149853017945104127158581151674618357470586573041429321297826264898103722100928190358789489996748918377200334 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x. See A269993 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 1..12 Eric Weisstein's World of Mathematics, Egyptian Fraction EXAMPLE (1/2)^(1/3) = 1/2 + 1/(2*2) + 1/(4*6) + ... MATHEMATICA r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}] CROSSREFS Cf. A269993. Sequence in context: A326942 A247943 A329571 * A156529 A184712 A303225 Adjacent sequences:  A270355 A270356 A270357 * A270359 A270360 A270361 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Mar 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 05:25 EST 2020. Contains 331067 sequences. (Running on oeis4.)