login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156529
Triangle, T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1), read by rows.
1
1, 2, 2, 6, 64, 6, 24, 1276, 1276, 24, 120, 23088, 107584, 23088, 120, 720, 422712, 6388800, 6388800, 422712, 720, 5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040, 40320, 168521184, 15666814800, 126099116000, 126099116000, 15666814800, 168521184, 40320
OFFSET
0,2
FORMULA
T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1).
From G. C. Greubel, Dec 30 2021: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = n!. (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
6, 64, 6;
24, 1276, 1276, 24;
120, 23088, 107584, 23088, 120;
720, 422712, 6388800, 6388800, 422712, 720;
5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040;
MATHEMATICA
f[n_, k_]:= f[n, k]= If[k<0 || k>n, 0, If[k==0, 1, (k+1)*f[n-1, k] + (2*n-k+1)*f[n-1, k-1] ]]; (* f = A008517 *)
T[n_, k_]:= f[n+1, k+1]*f[n+1, n-k+1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Dec 30 2021 *)
PROG
(Magma)
A008517:= func< n, k | (&+[ (-1)^(n+j)*Binomial(2*n+1, j)*StiringFirst(2*n-k-j+1, n-k-j+1) : j in [0..n-k]]) >;
A156529:= func< n, k | A008517(n+1, k+1)*A008517(n+1, n-k+1) >;
[A156529(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2021
(Sage)
@CachedFunction
def A008517(n, k): return sum( (-1)^(n+j)*binomial(2*n+1, j)*stirling_number1(2*n-k-j+1, n-k-j+1) for j in (0..n-k) )
def A156529(n, k): return A008517(n+1, k+1)*A008517(n+1, n-k+1)
flatten([[A156529(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 30 2021
CROSSREFS
Cf. A008517.
Sequence in context: A247943 A329571 A270358 * A184712 A303225 A326943
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 09 2009
EXTENSIONS
Edited by G. C. Greubel, Dec 30 2021
STATUS
approved