login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1), read by rows.
1

%I #7 Sep 08 2022 08:45:41

%S 1,2,2,6,64,6,24,1276,1276,24,120,23088,107584,23088,120,720,422712,

%T 6388800,6388800,422712,720,5040,8156160,326165400,1031694400,

%U 326165400,8156160,5040,40320,168521184,15666814800,126099116000,126099116000,15666814800,168521184,40320

%N Triangle, T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1), read by rows.

%H G. C. Greubel, <a href="/A156529/b156529.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1).

%F From _G. C. Greubel_, Dec 30 2021: (Start)

%F T(n, n-k) = T(n, k).

%F T(n, 0) = n!. (End)

%e Triangle begins as:

%e 1;

%e 2, 2;

%e 6, 64, 6;

%e 24, 1276, 1276, 24;

%e 120, 23088, 107584, 23088, 120;

%e 720, 422712, 6388800, 6388800, 422712, 720;

%e 5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040;

%t f[n_, k_]:= f[n, k]= If[k<0 || k>n, 0, If[k==0, 1, (k+1)*f[n-1, k] + (2*n-k+1)*f[n-1, k-1] ]]; (* f = A008517 *)

%t T[n_, k_]:= f[n+1, k+1]*f[n+1, n-k+1];

%t Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Dec 30 2021 *)

%o (Magma)

%o A008517:= func< n,k | (&+[ (-1)^(n+j)*Binomial(2*n+1, j)*StiringFirst(2*n-k-j+1, n-k-j+1) : j in [0..n-k]]) >;

%o A156529:= func< n,k | A008517(n+1,k+1)*A008517(n+1,n-k+1) >;

%o [A156529(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Dec 30 2021

%o (Sage)

%o @CachedFunction

%o def A008517(n,k): return sum( (-1)^(n+j)*binomial(2*n+1, j)*stirling_number1(2*n-k-j+1, n-k-j+1) for j in (0..n-k) )

%o def A156529(n,k): return A008517(n+1, k+1)*A008517(n+1, n-k+1)

%o flatten([[A156529(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Dec 30 2021

%Y Cf. A008517.

%K nonn,tabl

%O 0,2

%A _Roger L. Bagula_, Feb 09 2009

%E Edited by _G. C. Greubel_, Dec 30 2021