login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270356 Denominators of r-Egyptian fraction expansion for log(2), where r = (1, 1/2, 1/4, 1/8, ...) 1

%I #15 Feb 24 2018 10:10:46

%S 2,3,10,85,6297,105324757,10291333539500676,

%T 72129634294824118806681649563665,

%U 3614136206345221874912341551952565198060297016360952863886217259

%N Denominators of r-Egyptian fraction expansion for log(2), where r = (1, 1/2, 1/4, 1/8, ...)

%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.

%C See A269993 for a guide to related sequences.

%H Clark Kimberling, <a href="/A270356/b270356.txt">Table of n, a(n) for n = 1..12</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%e log(2) = 1/2 + 1/(2*3) + 1/(4*10) + ...

%t r[k_] := 2/2^k; f[x_, 0] = x; z = 10;

%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

%t x = Log(2); Table[n[x, k], {k, 1, z}]

%o (PARI) r(k) = 2/2^k;

%o f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););

%o a(k, x=log(2)) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Mar 18 2016

%Y Cf. A269993.

%K nonn,frac,easy

%O 1,1

%A _Clark Kimberling_, Mar 17 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 02:20 EDT 2024. Contains 376003 sequences. (Running on oeis4.)