login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378318
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0.
3
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 30, 0, 1, 8, 30, 84, 170, 0, 1, 10, 48, 170, 496, 1050, 0, 1, 12, 70, 296, 1050, 3140, 6846, 0, 1, 14, 96, 470, 1920, 6846, 20832, 46374, 0, 1, 16, 126, 700, 3210, 12936, 46374, 142932, 323154, 0, 1, 18, 160, 994, 5040, 22402, 89712, 323154, 1005856, 2301618, 0
OFFSET
0,5
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A366266.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k+2) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 6, 16, 30, 48, 70, 96, ...
0, 30, 84, 170, 296, 470, 700, ...
0, 170, 496, 1050, 1920, 3210, 5040, ...
0, 1050, 3140, 6846, 12936, 22402, 36492, ...
0, 6846, 20832, 46374, 89712, 159390, 266800, ...
PROG
(PARI) T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
Columns k=0..1 give A000007, A366266.
Main diagonal gives A378378.
Cf. A378323.
Sequence in context: A229223 A128749 A106579 * A287318 A329020 A351640
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 23 2024
STATUS
approved