OFFSET
0,5
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A366266.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k+2) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 6, 16, 30, 48, 70, 96, ...
0, 30, 84, 170, 296, 470, 700, ...
0, 170, 496, 1050, 1920, 3210, 5040, ...
0, 1050, 3140, 6846, 12936, 22402, 36492, ...
0, 6846, 20832, 46374, 89712, 159390, 266800, ...
PROG
(PARI) T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 23 2024
STATUS
approved