login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378321
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3*n-3*r+k,r) * binomial(r,n-r)/(3*n-3*r+k) for k > 0.
1
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 3, 0, 1, 4, 6, 8, 6, 0, 1, 5, 10, 16, 19, 16, 0, 1, 6, 15, 28, 42, 50, 42, 0, 1, 7, 21, 45, 79, 114, 137, 114, 0, 1, 8, 28, 68, 135, 224, 322, 380, 322, 0, 1, 9, 36, 98, 216, 401, 652, 918, 1088, 918, 0, 1, 10, 45, 136, 329, 672, 1205, 1912, 2673, 3152, 2673, 0
OFFSET
0,8
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x^2 * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A019497.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-2,k+2) for n > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 3, 8, 16, 28, 45, 68, ...
0, 6, 19, 42, 79, 135, 216, ...
0, 16, 50, 114, 224, 401, 672, ...
0, 42, 137, 322, 652, 1205, 2088, ...
PROG
(PARI) T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
Columns k=0..1 give A000007, A019497.
Sequence in context: A291652 A378320 A071569 * A261835 A353436 A286932
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 23 2024
STATUS
approved