OFFSET
0,8
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x^2 * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A019497.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-2,k+2) for n > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 3, 8, 16, 28, 45, 68, ...
0, 6, 19, 42, 79, 135, 216, ...
0, 16, 50, 114, 224, 401, 672, ...
0, 42, 137, 322, 652, 1205, 2088, ...
PROG
(PARI) T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 23 2024
STATUS
approved