login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071919 Number of monotone nondecreasing functions [n]->[m] for n>=0, m>=0, read by antidiagonals. 14
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Sometimes called a Riordan array.

Number of different partial sums of 1+[2,3]+[3,4]+[4,5]+... - Jon Perry, Jan 01 2004

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 05 2005

T(n,k)=abs(A110555(n,k)), A110555(n,k)=T(n,k)*(-1)^k. - Reinhard Zumkeller, Jul 27 2005

(1,0)-Pascal triangle. - Philippe Deléham, Nov 21 2006

A129186*A007318 as infinite lower triangular matrices. - Philippe Deléham, Mar 07 2009

Let n>=0 index the rows and m>=0 index the columns of this rectangular array. R(n,m) is "m multichoose n", the number of multisets of length n on m symbols. R(n,m)= Sum_i=0...n;R(i,m-1). The summation conditions on the number of members in a size n multiset that are not the element m (an arbitrary element in the set of m symbols). R(n,m)= Sum_i=1...m;R(n-1,i). The summation conditions on the largest element in a size n multiset on {1,2,...m}. - Geoffrey Critzer, Jun 03 2009

Sum(T(n,k)*B(k),k=0..n) = B(n), n>=0, with the Bell numbers B(n):=A000110(n) (eigensequence). See, e.g., the W. Lang link, Corollary 4. - Wolfdieter Lang, Jun 23 2010

For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013

For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

LINKS

G. C. Greubel, Table of n, a(n) for the first 101 antidiagonals, flattened

D. Merlini, F. Uncini and M. C. Verri, A unified approach to the study of general and palindromic compositions, Integers 4 (2004), A23, 26 pp.

Wolfdieter Lang, Simple proofs of some facts related to the Bell sequence and triangles A007318 (Pascal) and A071919 (enlarged Pascal). [From Wolfdieter Lang, Jun 23 2010]

FORMULA

Lim_{k->inf.} A071919^k = (A000110,0,0,0,0,...) with the Bell numbers in the first column. For a proof see, e.g., the W. Lang link, proposition 12.

A(n,k) = binomial(n+k-1,n). - Reinhard Zumkeller, Jul 27 2005

G.f.: 1 + x + x^3(1+x) + x^6(1+x)^2 + x^10(1+x)^3 + ... . - Michael Somos, Aug 20 2006

G.f. of the triangular interpretation: (-1+x*y)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015

EXAMPLE

   1,   1,   1,   1,   1,   1,   1,   1,   1,...

   0,   1,   2,   3,   4,   5,   6,   7,   8,...

   0,   1,   3,   6,  10,  15,  21,  28,  36,...

   0,   1,   4,  10,  20,  35,  56,  84, 120,...

   0,   1,   5,  15,  35,  70, 126, 210, 330,...

   0,   1,   6,  21,  56, 126, 252, 462, 792,...

   0,   1,   7,  28,  84, 210, 462, 924,1716,...

   0,   1,   8,  36, 120, 330, 792,1716,3432,...

   0,   1,   9,  45, 165, 495,1287,3003,6435,...

MAPLE

A:= (n, m)-> binomial(n+m-1, n):

seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Jan 13 2017

MATHEMATICA

Table[Table[Binomial[m - 1 + n, n], {m, 0, 10}], {n, 0, 10}] // Grid (* Geoffrey Critzer, Jun 03 2009 *)

a[n_, m_] := Binomial[m - 1 + n, n]; Table[Table[a[n, m - n], {n, 0, m}], {m, 0, 10}] // Flatten (* G. C. Greubel, Nov 22 2017 *)

PROG

(PARI) { n=20; v=vector(n); for (i=1, n, v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2, n, k=length(v[i-1]); for (j=1, k, v[i][j]=v[i-1][j]+i; v[i][j+k]=v[i-1][j]+i+1)); c=vector(n); for (i=1, n, for (j=1, 2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry

(PARI) {a(n) = my(m); if( n<1, n==0, m = (sqrtint(8*n+1) - 1)\2; binomial(m-1, n - m*(m+1)/2))}; /* Michael Somos, Aug 20 2006 */

CROSSREFS

Cf. A000110, A007318, A228196, A228576.

Columns are A000007, A000012, A000027, A000217, A000292, A000332, A000389, ...

Main diagonal gives A088218.

Sequence in context: A213889 A110555 A097805 * A167763 A277666 A274581

Adjacent sequences:  A071916 A071917 A071918 * A071920 A071921 A071922

KEYWORD

nonn,easy,tabl

AUTHOR

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 08:40 EDT 2018. Contains 316259 sequences. (Running on oeis4.)