The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129186 Right shift operator generating 1's in shifted spaces. 20
 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let A129186 = M, then M*V, V a vector; shifts V to the right, appending 1's to the shifted spaces. Example: M*V, V = [1,2,3,...] = [1,1,2,3,...]. Triangle T(n,k), read by rows, given by (1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 08 2011 LINKS Robert Price, Table of n, a(n) for n = 0..5049 FORMULA Infinite lower triangular matrix with (1,0,0,...) in the main diagonal and (1,1,1...) in the subdiagonal. G.f.: (1-(y-1)*x)/(1-y*x). - Philippe Deléham, Dec 08 2011 EXAMPLE First few rows of the triangle are: 1; 1, 0; 0, 1, 0; 0, 0, 1, 0; 0, 0, 0, 1, 0; ... MAPLE gf := 1 + z/(1 - x*z): ser := series(gf, z, 16): c := k -> coeff(ser, z, k): seq(seq(coeff(c(n), x, k), k=0..n), n=0..14); # Peter Luschny, Jul 07 2019 MATHEMATICA Join[{1}, Flatten[Table[PadLeft[{1, 0}, n, 0], {n, 2, 20}]]] (* Harvey P. Dale, Aug 26 2019 *) CROSSREFS Generalized Eulerian triangles: this sequence (m=0), A173018 (m=1), A292604 (m=2). Cf. A000012 (row sums), A071919, A129184, A129185. Sequence in context: A039985 A324822 A127239 * A095901 A087049 A186447 Adjacent sequences:  A129183 A129184 A129185 * A129187 A129188 A129189 KEYWORD nonn,easy,tabl AUTHOR Gary W. Adamson, Apr 01 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 04:04 EDT 2020. Contains 334858 sequences. (Running on oeis4.)