login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129187
Decimal expansion of arcsinh(1/3).
3
3, 2, 7, 4, 5, 0, 1, 5, 0, 2, 3, 7, 2, 5, 8, 4, 4, 3, 3, 2, 2, 5, 3, 5, 2, 5, 9, 9, 8, 8, 2, 5, 8, 1, 2, 7, 7, 0, 0, 5, 2, 4, 5, 2, 8, 9, 9, 0, 7, 6, 7, 4, 5, 1, 2, 7, 5, 6, 2, 9, 5, 1, 5, 4, 2, 7, 1, 7, 6, 5, 6, 2, 9, 4, 9, 3, 2, 7, 2, 1, 4, 1, 1, 9, 8, 2, 4, 7, 7, 3, 0, 6, 3, 2, 3, 1, 9, 5, 5
OFFSET
0,1
COMMENTS
Archimedes's-like scheme: set p(0) = 1/sqrt(10), q(0) = 1/3; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (arithmetic mean of reciprocals, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
FORMULA
Equals log((1 + sqrt(10))/3). - Jianing Song, Jul 12 2018
Equals arccoth(sqrt(10)). - Amiram Eldar, Feb 09 2024
EXAMPLE
0.32745015023725844332253525998825812770052452899076745127562...
MATHEMATICA
RealDigits[ArcSinh[1/3], 10, 111][[1]] (* Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) asinh(1/3) \\ Charles R Greathouse IV, Mar 25 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jul 27 2008
STATUS
approved