login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x). 4
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The generalized Eulerian polynomials F_{m}(x) are defined F_{m; 0}(x) = 1 for all m >= 0 and for n > 0:

F_{0; n}(x) = Sum_{k=0..n} A097805(n, k)*(x-1)^(n-k) with coeffs. in A129186.

F_{1; n}(x) = Sum_{k=0..n} A131689(n, k)*(x-1)^(n-k) with coeffs. in A173018.

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) with coeffs. in A292604.

F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) with coeffs. in A292605.

F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) with coeffs. in A292606.

The case m = 1 are the Eulerian polynomials whose coefficients are the Eulerian numbers which are displayed in Euler's triangle A173018.

Evaluated at x in {-1, 1, 0} these families of polynomials give for the first few m:

F_{m} :   F_{0}    F_{1}    F_{2}    F_{3}    F_{4}

x = -1:  A165326  A155585  A002105  A292609  A292607

x =  1:  A000012  A000142  A000680  A014606  A014608  ... (m*n)!/m!^n

x =  0:    --     A000012  A000364  A002115  A211212  ... m-alternating permutations of length m*n.

Note that the constant terms of the polynomials are the generalized Euler numbers as defined in A181985. In this sense generalized Euler numbers are also generalized Eulerian numbers.

REFERENCES

G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.

LINKS

Table of n, a(n) for n=0..35.

FORMULA

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.

EXAMPLE

Triangle starts:

[n\k][    0        1        2       3     4  5  6]

--------------------------------------------------

[0][      1]

[1][      1,       0]

[2][      5,       1,       0]

[3][     61,      28,       1,      0]

[4][   1385,    1011,     123,      1,    0]

[5][  50521,   50666,   11706,    506,    1, 0]

[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]

MAPLE

Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):

A292604_row := proc(n) if n = 0 then return [1] fi;

add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:

for n from 0 to 6 do A292604_row(n) od;

MATHEMATICA

T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[_, 1] = 1; T[_, _] = 0;

F[2, 0][_] = 1; F[2, n_][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];

row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];

Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)

PROG

(Sage)

def A292604_row(n):

    if n == 0: return [1]

    S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))

    return expand(S).list() + [0]

for n in (0..6): print(A292604_row(n))

CROSSREFS

F_{0} = A129186, F_{1} = A173018, F_{2} is this triangle, F_{3} = A292605, F_{4} = A292606.

First column: A000364. Row sums: A000680. Alternating row sums: A002105.

Cf. A181985, A241171.

Sequence in context: A019183 A019156 A256042 * A112991 A346081 A137373

Adjacent sequences:  A292601 A292602 A292603 * A292605 A292606 A292607

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Sep 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 22:23 EDT 2022. Contains 354984 sequences. (Running on oeis4.)