login
A292602
a(n) = floor(A005940(1+n)/4).
3
0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 3, 3, 6, 4, 6, 4, 2, 3, 5, 5, 8, 7, 11, 6, 12, 12, 18, 9, 31, 13, 20, 8, 3, 5, 8, 7, 13, 10, 15, 10, 19, 17, 26, 15, 43, 22, 33, 12, 30, 24, 36, 25, 61, 37, 56, 18, 85, 62, 93, 27, 156, 40, 60, 16, 4, 6, 9, 11, 16, 16, 24, 14, 22, 27, 41, 21, 68, 31, 47, 20, 35, 38, 57, 35, 96, 52, 78
OFFSET
0,7
FORMULA
a(n) = A002265(A005940(1+n)).
4*a(n) + A292603(n) = A005940(1+n).
EXAMPLE
The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292603):
0
|
...................0...................
0 1
1......../ \........1 2......../ \........2
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
1 2 3 3 6 4 6 4
2 3 5 5 8 7 11 6 12 12 18 9 31 13 20 8
PROG
(Scheme) (define (A292602 n) (let* ((x (A005940 (+ 1 n))) (d (modulo x 4))) (/ (- x d) 4)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 01 2017
STATUS
approved